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Abstract

The number of protein structures is currently increasing at an impressive rate. The growing wealth of data calls for methods
to efficiently exploit structural information for medicinal and pharmaceutical purposes. Given the three-dimensional (3D)
structure of a validated protein target, the identification of functionally relevant binding sites and the analysis (‘mapping’) of these
sites with respect to molecular recognition properties are important initial tasks in structure-based drug design. To address these
tasks, a variety of computational tools have been developed. Approaches to identify binding pockets include geometric analyses
of protein surfaces, comparisons of protein structures, similarity searches in databases of protein cavities, and docking scans to
reveal areas of high ligand complementarity. In the context of binding-site analysis, powerful data mining tools help to retrieve
experimental information about related protein–ligand complexes. To identify interaction hot spots, various potential functions
and knowledge-based approaches are available for mapping binding regions. The results may subsequently be used to guide virtual
screenings for new ligands via pharmacophore searches or docking simulations. © 2002 Éditions scientifiques et médicales Elsevier
SAS. All rights reserved.
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1. Introduction

A drug must interact with a biological target
molecule, most often a protein, to exert a physiological
function. Conversely, protein function is almost invaria-
bly linked with the specific binding of substrates or
endogenous ligands. Given the fundamental importance
of these recognition events at the molecular level, a key
role for the understanding of drug action and hence the
rational design of drugs is attributed to structural infor-
mation about the interacting molecules. Accordingly,
three-dimensional (3D) structures of protein targets
represent the preferred starting point for drug design
projects [1–5].

The current initiatives of structural genomics are a
clear reflection of the generally recognized importance
of protein structures for biomedical research [6]. With
the access to sequences of entire genomes of various

organisms, the goal of these efforts is to provide a
comprehensive view of the protein structure universe.
High-throughput X-ray crystallography and NMR
spectroscopy are expected to yield some 104 experimen-
tal protein structures within the next years, such that
(preferably) at least one experimental structure is deter-
mined for every protein sequence family. Computa-
tional homology modeling techniques could then be
applied to obtain structural models for virtually every
protein in nature. Whatever the strategy and the actual
success of the structural genomics efforts will be, they
are likely to accelerate the growth rate of protein
structural information beyond the already impressive
pace at which new structures are currently deposited to
the protein databank PDB [7,8]. Consequently, efficient
methods are required that allow to exploit this wealth
of structural data for the purpose of drug design.

Once the 3D structure of a protein is given, the
strategy to follow in a design project clearly depends on
the additional information that is available about the
biological target of interest. In general, three cases may
be distinguished:
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1.1. The binding site is unknown

Normally, at least the general function of the target
protein is known, but it may not yet be understood in
structural terms. This requires methods to identify the
binding region that should be targeted by a drug to
interfere with the protein’s function. In addition, it will
increasingly be the case that structural genomics pro-
vides structures of proteins whose actual biochemical
function has yet to be assigned. Such situations call for
methods to infer protein function from the 3D structure
before an actual design process can start. Since function
is normally linked to binding, the tasks of elucidating
functional aspects and identifying binding pockets are
interrelated to some extent.

1.2. The approximate binding region is known, but
neither information about its characteristics, nor about
ligand interactions is a�ailable

This situation is more commonly encountered and
requires a careful analysis of the protein structure in the
binding area to identify regions most favorable for
interaction, indicating ‘hot spots’ where certain func-
tional groups might preferably bind. This way a func-
tional map of the binding site is generated that can
guide the placement of potential ligands. Methods of
this kind may also directly include the possibility to
place or build-up ligands within the binding site or to
generate a pharmacophore model for database
searching.

1.3. The binding site is known and crystal structures
with bound ligands are a�ailable

Given a well-defined binding site, methods for
docking and virtual screening can be applied. Impli-
citly, however, these methods still rely on binding site
analyses, as some sort of functional or energetical map
is generally required to guide the search for suitable
ligand positions.

In the following, a selection of computational
methods addressing the tasks of binding site identifica-
tion and analysis is briefly presented. Slight emphasis is
given to knowledge-based approaches. These try to use
the wealth of structural information contained in crys-
tal structures of protein– ligand complexes and small
molecules to derive rules how a ligand could interact
with a protein receptor. Rules of this kind can help
solving the aforementioned tasks without having to
resort on frequently incomplete and simplified models.
In this sense they can also help to overcome deficiencies
in the current understanding of molecular recognition
in biological systems.

2. Identification of potential binding sites

The specific, functional binding of small molecules is
usually mediated by depressions in the protein surface.
Accordingly, binding sites are generally referred to as
cavities, grooves, pockets, or clefts. The phenomenon of
small-molecule binding in surface depressions is ulti-
mately a consequence of the physical principles gover-
ning molecular recognition: high affinity can only be
gained by sufficiently large interaction interfaces, and
specificity is more easily obtained within environments
that already impose geometric constraints.

Given the preponderance of pockets or cavities as
binding site locations, computational tools have been
developed to detect such depressions on the protein
surface in order to localize potential binding sites.
These methods normally rely on purely geometric crite-
ria, differing, however, in the algorithmic approaches
being used. Three examples of fast geometric cavity
identification programs are LIGSITE [9], Automatic
PROtein POcket Search (‘APROPOS’) [10], and Putative
Active Site with Spheres (‘PASS’) [11].

LIGSITE is based on the earlier developed POCKET

program [12] and embeds the considered protein in a
regularly spaced grid. Lattice intersections coinciding
with a protein atom’s van der Waals sphere are dis-
carded and the remaining lattice points are scored
according to their degree of burial in surface depres-
sions. The degree of burial is determined by scanning
the grid lines along the three Cartesian axes and the
four cubic diagonals for areas that are enclosed by
protein atoms on both sides. Adjacent lattice points of
high burial are clustered to reveal contiguous cavities.
For a small test set of ten protein– ligand complexes the
program was reported to identify the correct location of
the binding site with high precision in each case [9]. It
should be noted, though, that apparently in all test
cases the binding site corresponded to the largest
pocket on the surface (cf. remarks further below).

Instead of using grid representations of the protein-
surrounding space, APROPOS and PASS follow different
approaches. The APROPOS algorithm uses a so-called
alpha-shape description of the protein surface. Pockets
are identified by comparing surfaces generated with
different levels of resolution, i.e. an envelope surface
describing the global shape of the protein and a suita-
bly detailed surface reflecting the local structure. Based
on tests with more than 300 proteins, the method was
reported to locate binding sites with high reliability [10].
The program CAST is a further, more recent example
of a method based on alpha-shape theory [13].

In PASS, the protein is first coated with a layer of
spherical probes. These probes are then filtered to
eliminate those that either clash with the protein, are
not sufficiently buried, or are located too close to a
more buried probe. A new layer of probes is then
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grown onto the scaffold of all previously identified
probes and filtered as before. Growing and filtering are
repeated until no probes in a new layer survive the
filters. For all spheres of the final set, probe weights are
computed which are proportional to the number of
probe spheres in the vicinity and the extent to which
they are buried. Out of the probes with the highest
weights, the so-called ‘active-site points’ (ASP) are de-
termined, which should represent the center of a poten-
tial binding site. For a test set of 20 apo-protein crystal
structures, PASS was able to identify the location of the
ligand-binding site in 12 cases as top-ranked ASP, in 16
cases as an ASP among the top three [11].

Purely geometric tools for binding site identification
are generally well suited to localize all significant cavi-
ties or depressions on the protein surface. However, if
for a given protein multiple cavities are found, the
problem arises how to recognize which of these is a
functionally relevant binding site. The question, what
distinguishes a binding site from other cavities on the
protein surface, is actually of quite fundamental interest
[14]. While a simple general answer can hardly be given,
the characterization of cavities in terms of physico-
chemical parameters is likely to point into the right
direction for finding a solution to this problem. Purely
geometric criteria, however, seem to suffice in favorable
cases. Size, shape, and burial extent of protein cavities
dictate the geometry of ligands that can be favorably
accommodated, as good steric fit is usually a minimal
requirement for high-affinity binding. In comparative
analyses it has indeed been found that enzyme active
sites are often characterized by a particularly large and
deep cleft [13,15]. Accordingly, in many cases the active
site of an enzyme can be recognized successfully by
finding the largest cleft on the protein surface.

Methods going beyond a purely geometrical analysis
need to score the various cavities according to some
physico-chemical criteria or using an energy function.
This is normally performed by scanning the surface for
areas of high complementarity with respect to certain
molecular fragments or entire ligands. As a matter of
fact, it is also the nature of the ligand that determines
which cavity is addressed as a binding site. In principle,
any docking method should, therefore, be capable of
identifying potential binding sites. In practice, however,
standard docking methods are normally not used for
this purpose, mostly because they are not efficient
enough to scan entire protein surfaces in reasonable
computing time. In addition, standard scoring functions
are frequently not able to provide clear-cut discrimina-
tion between alternative binding locations. Neverthe-
less, some docking methods have been developed with
the explicit intention of identifying possible ligand bin-
ding sites. An example is the approach presented by
Ruppert et al. [16]. Here, the protein is coated with
molecular fragments, or probes, and the position of

each fragment is scored with a function parameterized
on experimental binding energies to give an estimated
affinity value for each probe position. The binding site
is then detected by screening for regions in which
high-affinity probes cluster and localizing the cluster
with highest overall affinity (score). Another example is
the vdW-FFT method described by Bliznyuk and
Gready [17,18]. Based on van der Waals-energy terms
evaluated on a regular cubic grid around the protein,
fast Fourier transform techniques are used to perform a
systematic scan of the entire protein surface for possible
ligand orientations to identify the best geometrical
matches. A set of best-matching ligand orientations is
subsequently refined by molecular mechanics energy
minimization, followed by evaluation of binding ener-
gies using Poisson–Boltzmann-type calculations. The
top-ranked ligand orientations found in this way should
elucidate the actual binding site.

All approaches mentioned so far try to identify bin-
ding sites by relying exclusively on the 3D structure of
the protein under consideration. Frequently, however,
information about function and binding sites of related
systems is already available. Proteins of related function
often share a comparable recognition pocket. With a
minimum of functional information available, the bin-
ding site of a new structure may, therefore, be detected
by comparison with other proteins of the same func-
tion. Conversely, a comparison of pockets on the sur-
face of different proteins may allow to detect functional
relationships. Accordingly, comparisons based on some
sort of similarity with well-characterized proteins of
known structure and function can provide an addi-
tional route to the identification of functionally relevant
binding sites of the query protein. As with any ap-
proaches that make use of existing knowledge, the
scope and success rate of these methods will further
increase as the number of solved protein structures
continues to grow.

In general, the essence of these methods to infer
protein function from 3D structure is ‘similarity’ or
‘homology’. Traditionally, bioinformatics assigns func-
tional data by searching for relatives in sequence data-
bases [19]. However, many relationships can only be
detected from the 3D structure, which is more con-
served during evolution than sequence similarity [20].
Various algorithms are available for comparing protein
structures in 3D to recognize structurally related
proteins [21]. These programs are efficient enough to
perform rapid searches of entire structural databases
such as the PDB. The results of mutual comparisons
for all known protein structures are themselves stored
in databases that provide classifications of protein
structures, in part with functional annotations. An
example for such a database is CATH (http://
www.biochem.ucl.ac.uk/bsm/cath–new) [22,23].
NCBI’s ‘Entrez Structure’ is another, highly integrated
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database service that allows to search for neighbors in
sequence and structure (http://www.ncbi.nlm.nih.gov/
Structure) [24]. Yet another example is the FSSP data-
base (http://www2.ebi.ac.uk/dali/fssp/fssp.html) [25–
27], which stores the structural neighbors of all proteins
in the PDB. FSSP stands for ‘Fold classification based
on Structure-Structure alignment of Proteins’. The al-
gorithm used for the alignment and classification is
provided as free network service through the Dali
server (http://www2.ebi.ac.uk/dali). Coordinates of a
new protein structure submitted to the server are com-
pared against all others in the PDB. This can reveal
functionally interesting similarities that are not de-
tectable by comparing sequences. An example is barley
endochitinase, an enzyme involved in plant defense
reactions [21]. Sequence analysis and site-directed muta-
genesis studies failed to identify the active site, but
structural comparisons revealed a similarity with
lysozyme subclasses. Importantly, location and compo-
sition of the active site and key structural residues were
found to be conserved in endochitinase.

Although all these tools may provide first hints on
function and binding site location, the relationship
between structure and function is by no means simple
and straightforward. A similar fold does not necessarily
imply a similar biochemical function and proteins with
different folds can also show the same function and
catalytic mechanism (as for example the serine
proteases trypsin and subtilisin). It is, therefore, often
advisable to go beyond the comparison of protein folds
or global structural motifs in order to look at local
structural motifs, i.e. at the details of a protein’s active
site. Local structural motifs, such as the catalytic triads
of enzymes, can capture the essence of the biochemical
function and thus be used to assign function [28–30].

A new approach to detect functional similarity inde-
pendent of sequence and fold homology goes beyond
the simple search for structural motifs and uses instead
physicochemical comparisons of protein cavities [31].
This is based on the rationale that protein function is
often intimately connected with the recognition of
ligands, which usually occurs in well-defined clefts or
cavities of the protein surface. In enzymes, for example,
elementary steps of the catalyzed reaction require a
strictly defined spatial arrangement of the reaction part-
ners. This in turn means that the determinants of
molecular recognition need to be highly conserved in
their relative orientation. The conservation of molecu-
lar recognition patterns between binding sites of func-
tionally similar proteins should, therefore, allow to
identify functional relationships and to localize binding
sites by searching for similarities within protein cavities.
To capture the features that are essential for molecular
recognition, such a search should be based on surface-
exposed physico-chemical properties.

More in detail, the method works as follows: using
the aforementioned LIGSITE algorithm to detect depres-
sions on protein surfaces, cavities are retrieved from the
entire body of protein crystal structures and stored in a
new database called CAVBASE. The atomic coordinates
of the residues flanking the cavity are reduced to a set
of generic pseudo centers, classified according to five
properties: hydrogen bond donor, acceptor, mixed
donor/acceptor, hydrophobic aliphatic, and aromatic
contacting group. These pseudo centers are further
examined for their surface exposure and assigned to the
nearest lattice surface intersections (the cavity detection
algorithm is based on a lattice representation of the
protein-near space). The cavity shape, the set of as-
signed descriptors of exposed recognition properties,
and the corresponding surface patches are all stored in
CAVBASE. The way the information is stored allows for
fast and efficient comparisons within large data sets.
The implemented search algorithm tries to detect com-
mon subgraphs generated by nodes that correspond to
pairs of pseudo centers of equivalent properties and
similar mutual distances. Appropriate tolerances have
been incorporated to consider structural variations re-
sulting from conformational flexibility of the protein
and inherent limitations of the accuracy of protein
structure determination. The results of a comparison
are ranked by scoring the matches in terms of the
assigned surface-exposed physicochemical properties.
Scanning a cavity of interest (‘query cavity’) against a
sample of several thousand binding pockets should
ideally yield as top-ranked results binding pockets that
exhibit local surface similarity and share binding motifs
with the query cavity. As this approach is entirely based
on physicochemical properties exposed toward the sur-
face rather than amino acid complementarity, it allows
the detection of relationships independent of any se-
quence or fold homology. This is confirmed by exam-
ples carried out with chorismate mutases and serine
proteases. Searches within a cavity database of more
than 5000 entries retrieved proteins of similar function
as top-ranked hits even in cases where the correspon-
ding systems do not show any significant sequence or
fold homology [31]. This new database of binding-site
cavities characterized by essential recognition elements
may, therefore, serve as powerful tool to detect func-
tionally important sites in new proteins that might be
targeted in drug design projects.

3. Analysis and mapping of binding sites

The purpose of structure-based drug design is to
identify or construct molecules that bind with high
affinity to a structurally defined binding site of a target
protein. The binding site specifies structural and physi-
cochemical constraints that must be met by any putative
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ligand [32]. It is hence imperative to analyze the consti-
tution of the binding site by mapping the characteristics
that are essential for ligand recognition.

As a starting point it is frequently useful to retrieve
all structural information that is already available
about the system under consideration. Databases with
efficient user interfaces and powerful query tools are
required for this purpose. With respect to protein–
ligand complexes such data-mining can be performed
with the help of REceptor-LIgand dataBASE
(‘RELIBASE’) (http://relibase.ccdc.cam.ac.uk) [33,34].
RELIBASE has been designed as a fast and flexible tool
for the retrieval, visualization, and analysis of informa-
tion about protein– ligand complexes. It contains all the
PDB structures together with additional data such as
ligand atom- and bond types, substructures, protein
sequence similarity, and crystallographic packing. As
such it can be used to compare structures, binding sites,
and ligand binding modes. The query system allows to
perform ligand-similarity or substructure searches,
searches for similar binding sites (in terms of sequence
homology), and protein– ligand interaction searches to
analyze interaction patterns between ligand fragments
and amino acid functional groups. Search results may
be superimposed for simultaneous display and the re-
trieved interaction geometries can be tabulated. This
frequently provides useful clues about preferred interac-
tion motifs and helps to reveal important characteristics
of a binding site.

Prerequisite for tight ligand binding are specific inter-
actions formed with protein atoms in the binding site.
These are usually non-covalent in nature (e.g. ionic
interactions, hydrogen bonds, van der Waals forces)
and should in sum exceed unfavorable contributions
such as desolvation or immobilization of translational
and rotational degrees of freedom. A detailed analysis
of the receptor site should, therefore, identify ‘hot
spots’ of binding, i.e. those regions where most favora-
ble non-covalent interactions are formed.

Several approaches directed toward this task are
available. Most of them try to determine favorable
binding locations by placing atom probes, molecular
fragments, or small molecules at various points in the
binding site and evaluating their interactions. Such
methods have been classified as ‘fragment location’,
‘fragment placement’, and ‘site-point connection’
methods [35]. The simple display of the results (hot
spots) together with the receptor structure can already
be used as valuable guide for the design of new ligands.
Some methods also allow to use these results directly
for subsequent ligand construction or docking to the
binding site [35].

A first class of methods is based on some sort of
energy function to identify regions favorable for inter-
action with particular ligand functional groups. Fre-
quently, methods of this kind use a discrete 3D lattice

to position probe atoms or groups within the binding
site. The archetypal program of this class is GRID [36].
It places probes such as methyl, hydroxyl, ammonium,
or carbonyl at regularly spaced grid points within the
active site. At each grid point the implemented energy
function is used to calculate the interaction energy
between the probe and the protein. Following this
concept a functional map of the binding site is con-
structed which indicates the most favorable regions for
placing ligand groups with similar properties to the
probes. Visualization of the maps by contouring at
appropriate energy levels reveals the binding-site hot
spots. Since the first introduction of GRID new types of
probes and energy functions have been developed to
further enhance the reliability of the method [37–39].

It is worth noting, though, that in principle any
scoring function could be applied to perform such
grid-based mappings and hot-spot analyses. Scoring
functions are normally used in the context of docking
to estimate binding affinities (for a brief review of
currently used scoring functions see [40]). Many
docking methods, as for example AutoDock [41–43],
ICM [44–46], DOCK [47,48], or ProDock [49,50],
make use of grid representations to speed up the energy
evaluation during the docking process. These implicit
binding site maps on which the docking relies could
also be analyzed explicitly, primarily by visualizing the
corresponding hot spots.

Also the knowledge-based DrugScore pair-potentials
have been used for grid-based hot-spot analyses [51].
To test their performance in such applications, a set of
158 crystallographically determined protein-ligand com-
plexes was analyzed with respect to the spatial coinci-
dence of hot spots with the experimentally observed
occurrence of matching ligand atom types at these
hot-spot sites. Depending on the atom-type classifica-
tion, overall prediction rates between 74 and 85% were
obtained. Results of this kind clearly highlight the
relevance of such binding site analyses as guidelines in
structure-based design.

An alternative to grid-based approaches is the multi-
ple copy simultaneous search (MCSS) method [52].
Instead of using probe atoms on a regular grid, several
copies (usually some thousand) of probe groups are
randomly distributed over the binding site and then
subjected to energy minimization along with molecular
dynamics simulation. During these calculations the
probes are invisible to each other and experience only
the forces from the protein atoms. The probes can thus
cluster in local minima, which allows to identify the
most favorable interaction sites.

Various extension and variants of the original MCSS
approach have been developed. It has, for example,
been coupled with methods for automated ligand de-
sign, which makes use of the optimized functional-
group positions, generated by MCSS [53–55]. The

http://relibase.ccdc.cam.ac.uk
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methodology has also been extended to include flexibi-
lity of the protein target, which is in contrast to stan-
dard MCSS where the protein is kept rigid [56]. Protein
flexibility is also taken into account by a method to
generate so-called dynamic pharmacophore models:
here, multiple conformations of a protein binding site
are considered for an MCSS-type mapping based on
Monte Carlo sampling instead of the standard molecu-
lar dynamics procedure [57,58].

A useful approach for visual analysis of binding site
characteristics is the mapping of physicochemical pro-
perties onto molecular surface representations. The
property most commonly used in this context is the
electrostatic potential. It is normally obtained by sol-
ving the Poisson–Boltzmann equation [59], for which a
variety of programs is available (e.g. UHBD [60], DELPHI

[61]). Various molecular visualization programs can
then be used to color-code appropriate surface repre-
sentations of the protein. One of the most popular
programs in this context is GRASP (http://
honiglab.cpmc.columbia.edu/grasp) [62]. Apart from vi-
sualization routines, GRASP also contains an internal
Poisson–Boltzmann solver and may, therefore, by used
as standalone tool for electrostatic-potential surface
mapping. Parts of its functionality are provided
through the online service GRASS (http://
honiglab.cpmc.columbia.edu/surfserv.html) where users
may search for PDB entries or submit their own coordi-
nates to obtain surface representations of the corre-
sponding structure with certain properties mapped onto
them. Properties available for selection include not only
the electrostatic potential, but also various simple hy-
drophobicity measures (based on atom type, residue
type, or transfer free energy).

Since useful clues about the binding of nonpolar
groups can be obtained from hydrophobic surface
patches, more sophisticated ways for generating hydro-
phobicity maps have also been developed [63]. Here, the
binding energy of a nonpolar probe sphere rolled over
the protein surface is calculated based on the van der
Waals interaction and the electrostatic desolvation
energy of the protein. The results are color coded and
mapped onto a molecular surface generated with
GRASP. Comparative evaluation of the method using
ten diverse protein– ligand complexes revealed a high
predictive power with respect to binding modes of
nonpolar groups. The binding energies of the nonpolar
probe sphere are also used in the docking program
SEED to direct the docking of nonpolar molecular frag-
ments [64].

A further, completely different class of methods is
given by rule-based or knowledge-based approaches,
the essence of which is to make use of the information
stored in the vast amount of experimental (crystallo-
graphic) data through the derivation of rules for pre-
ferred protein-ligand interaction patterns. This idea has

been followed in the so-called composite crystal-field
approach [65,66]. Here, the Cambridge Structural
Database (CSD) of small molecule crystal structures
[67] was statistically analyzed for intermolecular con-
tact geometries of various functional groups, as found
in the crystal packing of organic molecules. Search
results for contacts between two functional groups X
and Y were superimposed onto the X groups, produ-
cing scatterplots of the experimental distribution of Y
around X. This composite picture of possible interac-
tion geometries indicates orientational preferences and
can thus be used to guide the placement of ligand
functional groups in the protein binding site.

In the program LUDI, the results of this statistical
analysis of nonbonded interactions have been trans-
lated into rules to calculate so-called interaction sites
[68,69]. These interaction sites are discrete positions and
vectors in space suitable for forming hydrogen bonds or
filling hydrophobic pockets. As such they represent a
functional map of the binding site. Since LUDI is actual-
ly a tool for de-novo design, it does not stop at this
point, but proceeds by matching molecular fragments
onto these sites. The placed fragments can be inter-
preted as a more sophisticated functional map, provi-
ding a more detailed information about chemical
moieties that may be favorably placed in the binding
site. In a subsequent step, the program enters a so-
called link mode and tries to connect suitable fragments
with small bridging groups (e.g. �CH2� or �COO�) to
form a contiguously connected molecule. The final
structures are then scored using a fast empirical scoring
function. Various recent examples have demonstrated
the usefulness of LUDI in real-life drug design projects
[70–72]. Besides LUDI, also the docking program
FLEXX uses results of the composite crystal-field analy-
sis to guide the placement of ligands into binding
pockets [73,74].

The idea of analyzing small molecule crystal struc-
tures for intermolecular contacts has also resulted in the
generation of an entire database of nonbonded interac-
tion geometries, called ISOSTAR [75]. This database
presents non-bonded interactions in terms of scatter-
plots, which show the distribution of contacting groups
around a central group. These distributions can be
transformed into density maps, which can then be
displayed as contoured surfaces. The library contains
more than 10 000 scatterplots based on nonbonded
contacts observed in the CSD compiled from about 300
central groups surrounded by up to �40 types of
different contact groups.

The program SUPERSTAR has been developed for
identifying interaction sites in proteins based entirely on
the information stored in ISOSTAR [76,77]. For this
purpose, a template molecule (e.g. a protein binding
site) is decomposed into structural fragments. The scat-
terplots, showing the distribution of a selected probe

http://honiglab.cpmc.columbia.edu/grasp
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around these structural fragments, are superimposed on
the corresponding portions of the template. The scatter-
plots are then translated into a 3D map that shows the
propensity of the probe at different positions around
the template molecule. This propensity reflects the
probability of finding a contact group in a particular
region in space. For a test set of 122 protein– ligand
complexes, Superstar detects the correct atom type for
solvent-inaccessible ligand atoms in 82–90% of the
cases, depending on the atom-type classification. Re-
cently, also PDB-based interaction fields have been
added to SUPERSTAR [78]. In a comparative evaluation,
they were found to be more suitable to identify hydro-
phobic interaction sites, but overall they appeared
equally successful as the original CSD-based maps.

4. Concluding remarks

Whatever method is chosen for binding-site analysis
and the generation of functional maps, the results usual-
ly serve the purpose of supporting interactive design
work and providing suggestions for the tailored modifi-
cation of ligands. In addition, they are of fundamental
importance for effective virtual screening [79], both by
3D pharmacophore searches [80,81] and docking calcu-
lations [82]. Recent examples of successful structure-
based design for targets as diverse as carbonic
anhydrase [83], tRNA-guanine transglycosylase [70],
and DNA-gyrase [71] have provided compelling evi-
dence that the hierarchical, stepwise application of
these techniques constitutes a promising and powerful
strategy.

The presently available methods for binding-site
identification and binding-site analysis are valuable
computational tools to exploit protein structural infor-
mation for the purpose of ligand design. Nevertheless,
it is also well known that a considerable number of
limitations exist that still preclude an easy, fast, and
fully automated way from a target structure to a lead
or even a drug. Careful application of the methods and
a careful interpretation of the results is, therefore,
mandatory, as is further research to improve the cur-
rent methods. In addition, success also depends on the
quality of the experimental data (structural, energetical,
and biochemical alike) onto which part of these
methods are built. High-throughput experimentation
and data acquisition should, therefore, not be pursued
at the expense of quality.

Generally, the prediction accuracy of most of the
presented methods is roughly around 80% (as estab-
lished by comparisons of calculated binding modes or
interaction hot spots with experimental data). Different
methods have different weaknesses and strengths,
though, and it is frequently advisable to apply a combi-
nation of approaches to tackle a certain problem. If

consistent results are obtained, this supports the conclu-
sions; if alternative results are obtained, their plausibi-
lity may be assessed based on available experimental
data and on the underlying approximations of the
method applied. Moreover, they may also provoke new
experiments to be performed.

While some of the current limitations are due to
simplifications required to keep models and algorithms
tractable within reasonable computing times, others are
clear reflections of persisting problems in understanding
and modeling the fundamental process of molecular
recognition in biological systems. These include issues
of protein flexibility, the interactions with water, the
dynamic nature of the binding event and ligand induced
steric and electrostatic effects, not to mention a proper
consideration of the cellular environment. Due to the
current inability to quantify binding with precision
based on theoretical considerations and affordable cal-
culations, knowledge-based methods may represent the
preferred route for some time to come. Once the under-
lying data are processed, approaches of this kind are
fast. More importantly, they take advantage of the
growing body of experimental data and implicitly con-
sider many effects that are not yet fully understood or
manageable in a quantitative way.
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